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a b s t r a c t

The sorption and retention of mixtures of heavy metals by soil is a complex process that depends on both
soil properties and competition between metals for sorption sites. In this study, the sorption and retention
of mixtures of Cd, Cr, Pb, Cu, Zn and Ni by a representative sample of soils from Galicia (N.W. Spain) was
reproduced considerably more precisely by binary decision-tree regression models constructed using the
CART algorithm than by linear regression models.

Of the six metals competing for sorption sites in these experiments, Pb, Cu and Cr were sorbed and

eywords:
ART
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orption
etention

retained to a greater extent than Cd, Ni and Zn. Non-linear tree regression models constructed with CART
fitted the data better than linear models, especially for Cd, Ni and Zn; and with both kinds of model the
data for Pb, Cu and Cr were fitted better than those for Cd, Ni and Zn (the difference being much more
marked for linear models), suggesting that the influence of soil properties on the sorption and retention
of the latter three metals was limited by the preferential binding of the former three.

ˆ

eavy metal
oil characteristics

. Introduction

Numerous land treatments and other practices, including the
pplication of fertilizer or sewage sludge, the disposal of wastew-
ter on land, and industrial activity, can lead to soils accumulating
eavy metal contents substantially in excess of natural levels, with
he consequent risk of uptake by plants, pollution of surface or
nderground waters, and propagation through the food chain [1].
he risk of leaching or uptake by plants depends on the concen-
ration of pollutant in the soil solution, which in turn depends on
he sorption–desorption equilibria that govern the partition of pol-
utant between soil solution and soil solids, soil colloids especially
2,3]. The toxic potential of heavy metals in soil thus depends on
oil composition, particularly the amount and type of clay min-
rals [4–6], organic matter [7,8] and iron and manganese oxides
9–11].

In keeping with the above, in previous work we found that the
orption and desorption of heavy metals by certain soils in Gali-

ia (N.W. Spain) is determined mainly by organic matter, Fe and
n oxides, and clay and mica contents [12–14]. However, sorption

nd desorption isotherms have irregular profiles presumably due to
ompetition among metals for sorption sites, and the dependence

∗ Corresponding author. Tel.: +34 986 812630; fax: +34 986 812556.
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of sorption and desorption on soil properties is only moderately
well represented by linear models [15,16].

A methodology that is gaining favour in an increasingly broad
variety of fields for modelling non-linear processes and structures
is the use of decision trees, generalizations of the familiar botanical
key. When it is a regression model that is needed rather than a clas-
sifier, i.e., when the dependent variable Y is a continuous random
variable with conditional distribution.

Y|x = f (x) + ε x = (x1, . . . , xn)

for some zero-mean random error ε and the problem is to esti-
mate the regression function f(x), these methods effectively divide
the space X = {x}, in which the random predictor variables Xi take
their values, into a finite number m of disjoint hyper-rectangles Dk
that together cover X, and approximate f(x) by a piecewise constant
function

f (x) = ˙m
1 ĉk1k, (1)

where 1k is the indicator function of Dk (1k(x) = 1 if x ∈ Dk, 1k(x) = 0
if x /∈ Dk) and ˆck is an estimate of the mean of Y in Dk (in practice,
the sample mean). The problem is to define the Dk. The regres-

sion tree approach (decision-tree regression) does this in successive
steps, creating a tree of nested hyper-rectangles D(i)

k
(the nodes

of the tree), the lowest members of which (the “leaves”) are the
final Dk. To avoid overfitting the model, this tree may then be
“pruned back”, a process analogous to backwards elimination of

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:emmaf@uvigo.es
dx.doi.org/10.1016/j.jhazmat.2009.01.016
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ariables from multiple linear regression models. Compared with
ther non-parametric regression methods (and with non-linear
arametric methods, when the function fitted lacks a firm theoret-

cal basis), decision-tree regression is considered to be especially
seful because of the ease with which the resulting tree can be
epresented graphically, used and interpreted even when there are
ultiple predictor variables.
In Section 2 below we describe in greater detail the construction

f binary regression trees by the CART algorithm (Breiman et al.
17]; see also Ripley [18] and Hastie et al. [19], and for the statistical
roperties of CART regression estimators, see Devroye et al. [20] and
yorfi et al. [21]). In Section 3 we describe the use of CART to model
ata on the sorption and retention of heavy metals by fourteen soils

n Galicia (N.W. Spain), and in Section 4 we present and comment
n the resulting regression trees, and compare their performance
ith that of linear regression models. Section 5 concludes.

. Construction of binary regression trees by cart

The first step in constructing a binary regression tree is to iden-
ify the predictor variable xj1 and the value a1 of xj1 that minimize

he squared error of the sample with respect to the constants c(1)
1 in

(1)
1 = {x|xj1 < a1} and c(1)

2 in D(1)
2 = {x|xj1 ≥ a1}, where c(1)

1 and c(1)
2

re the sample means in D(1)
1 and D(1)

2 , respectively. Formally,

j1, a1) = argmini,xi˙xs ∈ D1(ȳs − c(1)
1 )

2 + ˙xs ∈ D2(y
-s

− c(1)
2 )

2
(2)

here (xs, ys) are the sample points. This process is repeated for the

ubsamples contained in the hyper-rectangles D(1)
1 and D(1)

2 , which

plits D(1)
1 into D(2)

3 and D(2)
4 , and D(1)

2 into D(2)
5 and D(2)

6 ; and so on. A

urrently terminal node D(i)
k

is made definitively terminal (i.e., is not
urther split into smaller nodes) if it satisfies some smallness con-
ition, such as containing no more than a certain number of sample
oints or no more than a certain percentage of sample points.

Without a smallness condition to halt tree growth, the sample
ould be overfitted, i.e., the random noise would be incorporated

n ˆf(x), the part of the model that is supposed to reflect only mean-
ngful structure. Even with such a condition, overfitting is still a
roblem. Given a tree T0 grown as above from a sample S0, its
rediction performance on subsequent independent samples will
enerally not be as good as that of some subtree T* formed by
etracting some of its branches to internal nodes (which thereby
ecome leaves, the corresponding hyper-rectangles of which are
he unions of the leaves terminating the contracted branches of T0).
riefly, to try to achieve a compromise between good fit and robust-
ess, CART chooses T* from among a nested sequence

∑
0 =

∑
(T0,

0) of subtrees Tj, each of which minimizes, throughout some range
f the penalty term weighting parameter ˛, the function

(T, ˛;S0) = N−1˙s ∈S0 (ys − ĉk(s))2 + ˛l(T) = S(T, ˛;S0) + ˛l(T)

here N is the number of data points in the sample, ˆck(s) is the sam-
le mean in Dk(s) (the leaf of T to which sample point s belongs),
nd l(T) is the size of subtree T (the number of leaves). More specif-
cally, each subtree Tj in �0 minimizes C(T,�; S0) for all � in a
nique interval [˛j,˛j+1), where the ˛′ s form a finite sequence
∞ = ˛0,. . .,˛r,˛r+1 = ∞; and for all � in [˛j,˛j+1), Tj is the smallest

ubtree of T0 to minimize C(T,�; S0). Given this unique sequence
f subtrees (obtained by an algorithm included in the CART pro-
ram), the one chosen as T* is the one minimizing an estimate ˆs

f the predictive error of the tree that is obtained by the v-fold
ross-validation process sketched below.

The cross-validation process starts by random division of the
ample S0 into v subsamples, the sizes Ni of which are as equal as
ossible. Each of these subsamples in turn will be used as a test
Materials 167 (2009) 615–624

set S0 (i = 1, . . . , v) to test the performance of a tree Ti grown as
described above from the remainder of S0, S0 − Si. In each case,
the sequence

∑
t =

∑
(Ti, S0 − Si) is obtained, and the correspond-

ing sequence of regression estimates ˆf(x) so generated is used
to define a piecewise constant error function si(˛) = s(T(i,˛),˛; Si),
where T(i,˛) is the member of

∑
(Ti, S0 − Si) that minimizes C(T,˛;

S0 − Si) and the mean squared error si is calculated using the test
set Si. When this has been done for all i, the weighted average s†

(˛′
j
) = N−1˙iNisi(˛′

j
) is calculated at the points ˛′

j
= (˛j˛j+1)1/2; ˆs

is defined as the least of these averages; ˛* is defined as the largest
˛′

j
such that s† (˛′

j
) ≤ ŝ + ˇsE, where the constant ˇ is user-defined

and SE is an estimate of the standard error of s† that is likewise
obtained using the data generated from the cross-validation sets
S0 − Si and Si; and T* is defined as the member of

∑
(T0, S0) that

minimizes C(T,˛*, S0). The final regression estimate ˆf(x) is obtained
using the whole sample S0 to calculate the ˆck corresponding to
T*.

3. Application to heavy metal sorption/retention data

The data used were obtained in previous work [12,13,15,16] on
the sorption and retention of six heavy metals (Cd, Cr, Cu, Ni, Pb
and Zn) by fourteen soils that were collected in the province of
Pontevedra and were representative of the Galician soils on which
most crops are grown and on which the above heavy metals are
most commonly deposited. For heavy metal sorption and desorp-
tion experiments, samples were collected from the surface horizons
of all these soils. In each case, six samples were collected using
an Eijkelkamp sampler and were transported in polyethylene bags
to the laboratory, where they were air dried, passed through a
2-mm-mesh sieve, pooled, and homogenized in a vibratory solid
sample homogenizer (a Fritsch Laborette 27). Three subsamples of
the homogenized sample were used for soil analyses, and three
for sorption/desorption experiments. The soil characteristics deter-
mined were particle size distribution, the organomineral fraction,
oxides contents (Fe, Mn and Al), effective cation exchange capac-
ity (CECe), the percentage of the sub-2-�m fraction constituted by
clay, and mineralogy.

The sorption/retention data used here were obtained in exper-
iments in which 12 g of soil was added to 200 mL of a solution
containing 100 mg L−1 of each of the six metals. In each exper-
iment, cadmium, chromium, copper, nickel, lead and zinc were
sorbed from a “sorption solution” containing 100 mg L−1 of each
metal that had been made up by addition of the metal nitrates to
acetate buffer of pH 4.5 (0.02 M acetic acid, 0.02 M sodium acetate),
a medium chosen to simulate acid spill conditions. After equili-
bration by shaking for 24 h at 25 ◦C in a rotary shaker samples
were centrifuged at 1800 × g for 10 min. Metal concentrations in
the supernatants were determined by ICP-OES, and the amount of
each metal sorbed by the soil sample was calculated by difference
and expressed as a percentage of the amount initially present in the
sorption solution.

The pellets obtained by centrifugation in the sorption stage were
dried at 45 ◦C, weighed, and resuspended in 200 mL of acetate
buffer, after which these suspensions were equilibrated in a rotary
shaker for 24 h at 25 ◦C and centrifuged at 1800 × g for 10 min. Metal
concentrations in the supernatants were determined by ICP-OES,
and the quantities of metals retained by each soil sample were cal-
culated by difference with respect to the amounts sorbed in the
sorption experiments, and were expressed as percentages of the

latter.

Each sorption/desorption experiment was performed in tripli-
cate. In each stage of each experiment, following equilibration, pH
measurement confirmed that the pH of the medium was still 4.5
[12,13,15,16].
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Table 1
Descriptive statistics of the properties of 14 typical Galician soils.

Mean Median Minimum Maximum Std. Dev.

Humified O.M. (g kg−1) 25.48 22.29 0.95 71.91 20.07
Sand (%) 60.65 62.38 26.71 82.20 15.12
Silt (%) 15.83 14.04 1.67 34.56 11.71
CICe (cmol(+) kg−1) 5.22 4.83 0.36 11.22 3.10
Quartz (%) 4.88 4.26 0.84 11.93 3.28
Plagioclase (%) 1.89 0.25 0.00 7.50 2.78
Mica (%) 0.51 0.16 0.00 2.50 0.74
Kaolinite (%) 17.75 14.50 0.00 89.00 21.53
Vermiculite (%) 2.38 2.10 0.00 5.65 1.86
Gibbsite (%) 37.79 38.50 0.00 89.00 22.26
Chlorite (%) 8.73 6.70 0.00 29.75 7.59
Hematite (%) 7.54 1.75 0.00 33.00 10.30
Mn oxides (g kg−1) 0.16 0.03 0.00 1.52 0.36
Fe oxides (g kg−1) 13.43 8.96 2.47 74.36 16.22
Al oxides (g kg−1) 17.74 11.83 3.26 98.21 21.42

Table 2
Descriptive statistics of the capacity of 14 typical Galician soils for sorption and
retention of Pb, Cu, Cr, Cd, Ni and Zn in solutions containing all six (percentages of
metal sorbed and retained).

Mean Median Minimum Maximum Std. Dev.

Sorption
Cd 21.58 24.28 2.17 37.73 12.18
Cr 31.42 27.79 12.02 81.08 17.12
Cu 47.27 49.96 5.10 82.84 23.17
Ni 18.51 21.73 1.89 36.26 10.39
Pb 71.18 78.23 27.86 92.78 19.61
Zn 19.06 21.40 1.22 38.59 10.95

Retention
Cd 15.95 16.37 0.00 34.03 11.90
Cr 29.63 27.09 10.96 80.55 17.07
Cu 42.52 45.03 2.09 79.10 23.47
N
P
Z

f
l
w
ˇ

4

T
s
d
a
a

content); and soils with high sand contents were subsequently sep-

T
G
s

C
C
C
N
P
Z

i 14.21 14.82 0.00 33.77 10.43
b 67.33 74.79 23.64 90.44 20.69
n 16.19 16.09 0.00 35.97 11.22

In applying CART to these data (Statistica 7.0), the criterion used
or halting the growth of the regression tree was that leaves with
ess than five data points should not be split, and tree pruning
as performed using 10-fold cross-validation and the default value
= 1.

. Results

Table 1 summarizes the properties of the soil set used, and
able 2 lists descriptive statistics for the percentage of each metal

orbed by the soils and the percentage of sorbed metal retained
uring the subsequent desorption phase of the experiments. On
verage, Pb was the most sorbed and most retained metal, followed
t some distance by Cu and, further behind, by Cr.

able 3
oodness-of-fit (R2) of the models fitted by CART and forward stepwise multiple linear re
orbed and retained) on the basis of soil properties or, in the case of some CART models, s

R2 sorption (%)

LR CART

Soils +Pb +Cu +Cr

d 0.703 0.820 0.840 0.843 0.916
r 0.899 0.957
u 0.970 0.981
i 0.688 0.949 0.969 0.949 0.922
b 0.978 0.993
n 0.424 0.774 0.774 0.774 0.887
Materials 167 (2009) 615–624 617

Cd, Ni and Zn were very similar in their mean sorption and reten-
tion behaviour, which was doubtless limited by that of the more
readily sorbed metals.

Table 3 lists goodness-of-fit values (coefficients of determina-
tion R2, calculated as usual as

∑
s(ˆf(xs) − y)2/

∑
s(ys − y)2, where y

is the mean of the ys) for the results of using CART to regress sorp-
tion and retention data on the set of soil properties or on the soil
properties plus the sorption or retention of one of the three most
readily sorbed metals, Pb, Cu and Cr The R2 results achieved by for-
ward stepwise multiple linear regression (LR) on soil properties are
also shown for comparison. CART always achieved greater R2 than
LR, and for the less readily sorbed metals the increase was gener-
ally by a striking 0.25–0.35, reaching 0.53 in the case of retention
of Zn. Even in the case of Cr the R2 values achieved by LR, 0.899 and
0.895, rose to 0.957 and 0.958, respectively, with CART. Moreover, it
should be borne in mind that the performance of LR was favoured
by selecting the variables included in the model on the basis of the
whole sample rather than by a cross-validation process.

With both LR and CART, R2 was about 0.97–0.99 for Pb and Cu
and much lower for Cd and Zn. The difference was much more
pronounced in the case of LR, which reflects the much less linear
response of Cd and Zn sorption/retention to soil variables, and the
greater ability of CART to predict this non-linear response. With LR,
the R2 values of Cr could be grouped with those of Pb and Cu, and
those of Ni with those of Cd and Zn; while with CART, both Cr and
Ni grouped with Pb and Cu.

Non-linear tree regression models constructed with CART fitted
the data better than linear models, especially for Cd, Ni and Zn;
and with both kinds of model the data for Pb, Cu and Cr were fit-
ted better than those for Cd, Ni and Zn (the difference being much
more marked for linear models), suggesting that the influence of
soil properties on the sorption and retention of the latter three
metals was limited by the preferential binding of the former three.

Inclusion of the sorption or retention of Pb, Cu or Cr as a CART
predictor variable generally brought about just a small increase
in R2 for Cd and Zn, or a small decrease for Ni. However, larger
increases were achieved when Cr was included in the analysis of Zn
or Cd sorption and when Cu was included in the analysis of Cd reten-
tion, and a larger decrease when Cr was included in the analysis of
Cd retention.

Figs. 1–6 show the CART regression trees obtained for the metals
using only the soil properties as predictors. Concerning Fig. 1, top
(sorption of chromium), the variable with respect to which the first
bifurcation of the tree was defined was Fe oxides content, the three
soils with the lowest Fe oxides contents all having very high Cr sorp-
tion. Soils with higher Fe oxides contents were then segregated on
the basis of sand content (which is negatively correlated with clay
arated with respect to clay composition (specifically, on the basis
of chlorite, gibbsite and plagioclase contents, in that order). For the
retention of chromium (Fig. 1, bottom), the first bifurcation of the
tree was again defined with respect to Fe oxides content, but nodes

gression (LR) to account for the sorption and retention data (percentages of metal
oil properties plus the sorption or retention of one of the metals Pb, Cu and Cr.

R2 retention (%)

LR CART

Soils +Pb +Cu +Cr

0.556 0.854 0.854 0.947 0.788
0.895 0.958
0.981 0.991
0.606 0.947 0.947 0.947 0.918
0.976 0.991
0.352 0.885 0.885 0.886 0.886
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Fig. 1. CART binary regression tree for the sorption (top) and retention (bottom) of Cr by typical Galician soils.
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Fig. 2. CART binary regression tree for the sorption (top) and retention (bottom) of Cu by typical Galician soils.
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Fig. 3. CART binary regression tree for the sorption (top) and retention (bottom) of Pb by typical Galician soils.
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Fig. 4. CART binary regression tree for the sorption (top) and retention (bottom) of Cd by typical Galician soils.
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Fig. 5. CART binary regression tree for the sorption (top) and retention (bottom) of Ni by typical Galician soils.
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Fig. 6. CART binary regression tree for the sorption (top) and retention (bottom) of Zn by typical Galician soils.
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ere subsequently split on the basis of silt, sand, and organomin-
ral contents. All the figures can be interpreted the same way; for a
ore detailed explanation of the practical use of CARTs, see Covelo

t al. [22].
For Cu (Fig. 2), the variables haematite content and cation

xchange capacity are used to split nodes in both the sorption and
etention trees, accompanied by silt, organomineral content, ver-
iculite and chlorite in the sorption tree, and by sand and kaolinite

n the retention tree. For Pb (Fig. 3), CECe, Mn oxides, gibbsite and
ermiculite split nodes in both trees, accompanied in the sorption
ree by haematite and kaolinite, and in the retention tree by sand
nd organomineral contents. For the less readily sorbed metals,
he node-splitting variables common to the sorption and retention
rees are Mn oxides, silt and vermiculite for Cd; sand and haematite
or Ni; and silt and gibbsite for Zn (Figs. 4–6).

. Conclusions

The extent to which Galician soils sorb and retain Pb, Cu, Cr, Cd,
i and Zn in solutions containing all six is modelled in terms of

oil properties much better by binary regression trees constructed
sing the CART algorithm than by stepwise linear regression mod-
ls. Both kinds of model successfully fitted the data for Pb and Cu,
he metals that are most readily sorbed and retained, but CART is
learly superior to linear regression for modelling the behaviour
f the other metals, especially the markedly non-linear behaviour
f Zn and Cd, which is influenced by competition from the more
eadily sorbed metals Cr and Cu.

Of the six metals competing for sorption sites in these experi-
ents, Pb, Cu and Cr were sorbed and retained to a greater extent

han Cd, Ni and Zn. Non-linear tree regression models constructed
ith CART fitted the data better than linear models, especially for
d, Ni and Zn; and with both kinds of model the data for Pb, Cu
nd Cr were fitted better than those for Cd, Ni and Zn (the differ-
nce being much more marked for linear models), suggesting that
he influence of soil properties on the sorption and retention of the
atter three metals was limited by the preferential binding of the
ormer three.
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