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The sorption and retention of mixtures of heavy metals by soil is a complex process that depends on both
soil properties and competition between metals for sorption sites. In this study, the sorption and retention
of mixtures of Cd, Cr, Pb, Cu, Zn and Ni by a representative sample of soils from Galicia (N.W. Spain) was
reproduced considerably more precisely by binary decision-tree regression models constructed using the
CART algorithm than by linear regression models.

Of the six metals competing for sorption sites in these experiments, Pb, Cu and Cr were sorbed and
CART retained to a greater extent than Cd, Ni and Zn. Non-linear tree regression models constructed with CART
Regression trees fitted the data better than linear models, especially for Cd, Ni and Zn; and with both kinds of model the
Soil data for Pb, Cu and Cr were fitted better than those for Cd, Ni and Zn (the difference being much more
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Sorption marked for linear models), suggesting that the influence of soil properties on the sorption and retention
Retention of the latter three metals was limited by the preferential binding of the former three.
Heavy metal © 2009 Elsevier B.V. All rights reserved.

Soil characteristics

1. Introduction

Numerous land treatments and other practices, including the
application of fertilizer or sewage sludge, the disposal of wastew-
ater on land, and industrial activity, can lead to soils accumulating
heavy metal contents substantially in excess of natural levels, with
the consequent risk of uptake by plants, pollution of surface or
underground waters, and propagation through the food chain [1].
The risk of leaching or uptake by plants depends on the concen-
tration of pollutant in the soil solution, which in turn depends on
the sorption-desorption equilibria that govern the partition of pol-
lutant between soil solution and soil solids, soil colloids especially
[2,3]. The toxic potential of heavy metals in soil thus depends on
soil composition, particularly the amount and type of clay min-
erals [4-6], organic matter [7,8] and iron and manganese oxides
[9-11].

In keeping with the above, in previous work we found that the
sorption and desorption of heavy metals by certain soils in Gali-
cia (N.W. Spain) is determined mainly by organic matter, Fe and
Mn oxides, and clay and mica contents [12-14]. However, sorption
and desorption isotherms have irregular profiles presumably due to
competition among metals for sorption sites, and the dependence
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of sorption and desorption on soil properties is only moderately
well represented by linear models [15,16].

A methodology that is gaining favour in an increasingly broad
variety of fields for modelling non-linear processes and structures
is the use of decision trees, generalizations of the familiar botanical
key. When it is a regression model that is needed rather than a clas-
sifier, i.e., when the dependent variable Y is a continuous random
variable with conditional distribution.

Yx=f(X)+¢e x=(x1,...,%Xn)

for some zero-mean random error € and the problem is to esti-
mate the regression function f{x), these methods effectively divide
the space X={x}, in which the random predictor variables X; take
their values, into a finite number m of disjoint hyper-rectangles D;,
that together cover X, and approximate f{x) by a piecewise constant
function

T(x): Elnrclcllc’ (1)

where 1 is the indicator function of Dy (1x(x)=1 if X Dy, 1,(x)=0
if x¢ D) and “c; is an estimate of the mean of Y in D, (in practice,
the sample mean). The problem is to define the D,. The regres-
sion tree approach (decision-tree regression) does this in successive
steps, creating a tree of nested hyper-rectangles D;:) (the nodes
of the tree), the lowest members of which (the “leaves”) are the
final Dy. To avoid overfitting the model, this tree may then be
“pruned back”, a process analogous to backwards elimination of
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variables from multiple linear regression models. Compared with
other non-parametric regression methods (and with non-linear
parametric methods, when the function fitted lacks a firm theoret-
ical basis), decision-tree regression is considered to be especially
useful because of the ease with which the resulting tree can be
represented graphically, used and interpreted even when there are
multiple predictor variables.

In Section 2 below we describe in greater detail the construction
of binary regression trees by the CART algorithm (Breiman et al.
[17]; see also Ripley [ 18] and Hastie et al. [19], and for the statistical
properties of CART regression estimators, see Devroye et al. [20] and
Gyorfi et al.[21]).In Section 3 we describe the use of CART to model
data on the sorption and retention of heavy metals by fourteen soils
in Galicia (N.W. Spain), and in Section 4 we present and comment
on the resulting regression trees, and compare their performance
with that of linear regression models. Section 5 concludes.

2. Construction of binary regression trees by cart

The first step in constructing a binary regression tree is to iden-
tify the predictor variable x;; and the value a; of xj; that minimize

the squared error of the sample with respect to the constants c%” in
D(ll) = {x[x;; < ai}and C(;) in D(Zl) = {X|xj; > a;}, where cgl) and 6(21)

are the sample means in D(ll) and D(zl), respectively. Formally,

. . _ 2 2
(1. a1) = argmin; i Zxs e p1 (Fs — i) + Zxsepa(y, — c5”) ()

where (s, ys) are the sample points. This process is repeated for the
subsamples contained in the hyper-rectangles D(f) and D(ZU, which
splits D(ll) into D(32) and DElZ), and D(Zl) into Dgz) and D(Gz); and soon. A

currently terminal node DE{’) is made definitively terminal (i.e., is not
further split into smaller nodes) if it satisfies some smallness con-
dition, such as containing no more than a certain number of sample
points or no more than a certain percentage of sample points.

Without a smallness condition to halt tree growth, the sample
would be overfitted, i.e., the random noise would be incorporated
in “f(x), the part of the model that is supposed to reflect only mean-
ingful structure. Even with such a condition, overfitting is still a
problem. Given a tree Tp grown as above from a sample Sy, its
prediction performance on subsequent independent samples will
generally not be as good as that of some subtree T" formed by
retracting some of its branches to internal nodes (which thereby
become leaves, the corresponding hyper-rectangles of which are
the unions of the leaves terminating the contracted branches of Tg).
Briefly, to try to achieve a compromise between good fit and robust-
ness, CART chooses T from among a nested sequence >0=>_ (To,
So) of subtrees Tj, each of which minimizes, throughout some range
of the penalty term weighting parameter ¢, the function

C(T, &; So) = N1 B 55 (s —T(5))> + &l(T) = S(T, 3 So) + cl(T)

where Nis the number of data points in the sample, “ci(s)is the sam-
ple mean in Dy(s) (the leaf of T to which sample point s belongs),
and [(T) is the size of subtree T (the number of leaves). More specif-
ically, each subtree T; in ¥y minimizes ((T.£; Sp) for all ¢ in a
unique interval [j,o41), where the o s form a finite sequence
—00=0Wg,. . ..0r.or+1 =00; and for all ¢ in [eyj,eje1), T; is the smallest
subtree of Tp to minimize ((T,{; Sp). Given this unique sequence
of subtrees (obtained by an algorithm included in the CART pro-
gram), the one chosen as T' is the one minimizing an estimate “s
of the predictive error of the tree that is obtained by the v-fold
cross-validation process sketched below.

The cross-validation process starts by random division of the
sample Sy into v subsamples, the sizes N; of which are as equal as
possible. Each of these subsamples in turn will be used as a test

set Sp (i=1,...,v) to test the performance of a tree T; grown as
described above from the remainder of Sy, Sp — S;. In each case,
the sequence Zf = E (T;, So — S;) is obtained, and the correspond-
ing sequence of regression estimates “f(x) so generated is used
to define a piecewise constant error function s;(c) =s(T(i,&),o; S;),
where T(i,r) is the member of Y (T;, Sp — ;) that minimizes ((T,«;
Sp — S;) and the mean squared error s; is calculated using the test
set S;. When this has been done for all i, the weighted average sf
(a]’.) =N-1 Z‘,»Nl»si(aj’.) is calculated at the points oz]’, = (ojajiq )1/2; s
is defined as the least of these averages; " is defined as the largest
a;. such that s (a]/.) <% + BsE, where the constant f is user-defined

and SE is an estimate of the standard error of st that is likewise
obtained using the data generated from the cross-validation sets
So —S; and S;; and T is defined as the member of > (To, Sp) that
minimizes C(T,o", Sp). The final regression estimate “f{x) is obtained
using the whole sample Sy to calculate the “c, corresponding to
T.

3. Application to heavy metal sorption/retention data

The data used were obtained in previous work [12,13,15,16] on
the sorption and retention of six heavy metals (Cd, Cr, Cu, Ni, Pb
and Zn) by fourteen soils that were collected in the province of
Pontevedra and were representative of the Galician soils on which
most crops are grown and on which the above heavy metals are
most commonly deposited. For heavy metal sorption and desorp-
tion experiments, samples were collected from the surface horizons
of all these soils. In each case, six samples were collected using
an Eijkelkamp sampler and were transported in polyethylene bags
to the laboratory, where they were air dried, passed through a
2-mm-mesh sieve, pooled, and homogenized in a vibratory solid
sample homogenizer (a Fritsch Laborette 27). Three subsamples of
the homogenized sample were used for soil analyses, and three
for sorption/desorption experiments. The soil characteristics deter-
mined were particle size distribution, the organomineral fraction,
oxides contents (Fe, Mn and Al), effective cation exchange capac-
ity (CECe), the percentage of the sub-2-pm fraction constituted by
clay, and mineralogy.

The sorption/retention data used here were obtained in exper-
iments in which 12 g of soil was added to 200 mL of a solution
containing 100mgL-! of each of the six metals. In each exper-
iment, cadmium, chromium, copper, nickel, lead and zinc were
sorbed from a “sorption solution” containing 100mgL-! of each
metal that had been made up by addition of the metal nitrates to
acetate buffer of pH 4.5 (0.02 M acetic acid, 0.02 M sodium acetate),
a medium chosen to simulate acid spill conditions. After equili-
bration by shaking for 24h at 25°C in a rotary shaker samples
were centrifuged at 1800 x g for 10 min. Metal concentrations in
the supernatants were determined by ICP-OES, and the amount of
each metal sorbed by the soil sample was calculated by difference
and expressed as a percentage of the amount initially present in the
sorption solution.

The pellets obtained by centrifugation in the sorption stage were
dried at 45°C, weighed, and resuspended in 200 mL of acetate
buffer, after which these suspensions were equilibrated in a rotary
shaker for 24 h at 25 °C and centrifuged at 1800 x g for 10 min. Metal
concentrations in the supernatants were determined by ICP-OES,
and the quantities of metals retained by each soil sample were cal-
culated by difference with respect to the amounts sorbed in the
sorption experiments, and were expressed as percentages of the
latter.

Each sorption/desorption experiment was performed in tripli-
cate. In each stage of each experiment, following equilibration, pH
measurement confirmed that the pH of the medium was still 4.5
[12,13,15,16].
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Table 1
Descriptive statistics of the properties of 14 typical Galician soils.
Mean Median Minimum Maximum  Std. Dev.

Humified O.M. (gkg~') 25.48 22.29 0.95 71.91 20.07
Sand (%) 60.65 62.38 26.71 82.20 15.12
Silt (%) 15.83  14.04 1.67 34.56 11.71
CICe (cmol,) kg1) 522 4.83 0.36 11.22 3.10
Quartz (%) 4.88 4.26 0.84 11.93 3.28
Plagioclase (%) 1.89 0.25 0.00 7.50 2.78
Mica (%) 0.51 0.16 0.00 2.50 0.74
Kaolinite (%) 17.75  14.50 0.00 89.00 21.53
Vermiculite (%) 2.38 2.10 0.00 5.65 1.86
Gibbsite (%) 37.79  38.50 0.00 89.00 22.26
Chlorite (%) 8.73 6.70 0.00 29.75 7.59
Hematite (%) 7.54 1.75 0.00 33.00 10.30
Mn oxides (gkg!) 0.16 0.03 0.00 1.52 0.36
Fe oxides (gkg") 13.43 8.96 247 74.36 16.22
Al oxides (gkg1) 17.74  11.83 3.26 98.21 21.42

Table 2

Descriptive statistics of the capacity of 14 typical Galician soils for sorption and
retention of Pb, Cu, Cr, Cd, Ni and Zn in solutions containing all six (percentages of
metal sorbed and retained).

Mean Median Minimum Maximum Std. Dev.

Sorption

Ccd 21.58 24.28 2.17 37.73 12.18
Cr 31.42 27.79 12.02 81.08 17.12
Cu 47.27 49.96 5.10 82.84 23.17
Ni 18.51 21.73 1.89 36.26 10.39
Pb 71.18 78.23 27.86 92.78 19.61
Zn 19.06 21.40 1.22 38.59 10.95
Retention

Cd 15.95 16.37 0.00 34.03 11.90
Cr 29.63 27.09 10.96 80.55 17.07
Cu 42.52 45.03 2.09 79.10 23.47
Ni 14.21 14.82 0.00 33.77 1043
Pb 67.33 74.79 23.64 90.44 20.69
Zn 16.19 16.09 0.00 35.97 11.22

In applying CART to these data (Statistica 7.0), the criterion used
for halting the growth of the regression tree was that leaves with
less than five data points should not be split, and tree pruning
was performed using 10-fold cross-validation and the default value

B=1.

4. Results

Table 1 summarizes the properties of the soil set used, and
Table 2 lists descriptive statistics for the percentage of each metal
sorbed by the soils and the percentage of sorbed metal retained
during the subsequent desorption phase of the experiments. On
average, Pb was the most sorbed and most retained metal, followed
at some distance by Cu and, further behind, by Cr.

Table 3

Cd, Ni and Zn were very similar in their mean sorption and reten-
tion behaviour, which was doubtless limited by that of the more
readily sorbed metals.

Table 3 lists goodness-of-fit values (coefficients of determina-
tion R?, calculated as usual as Y _s("flxs) — ¥)?/> s(ys —y)*, where y
is the mean of the y;) for the results of using CART to regress sorp-
tion and retention data on the set of soil properties or on the soil
properties plus the sorption or retention of one of the three most
readily sorbed metals, Pb, Cu and Cr The R? results achieved by for-
ward stepwise multiple linear regression (LR) on soil properties are
also shown for comparison. CART always achieved greater R? than
LR, and for the less readily sorbed metals the increase was gener-
ally by a striking 0.25-0.35, reaching 0.53 in the case of retention
of Zn. Even in the case of Cr the RZ values achieved by LR, 0.899 and
0.895, rose to 0.957 and 0.958, respectively, with CART. Moreover, it
should be borne in mind that the performance of LR was favoured
by selecting the variables included in the model on the basis of the
whole sample rather than by a cross-validation process.

With both LR and CART, R? was about 0.97-0.99 for Pb and Cu
and much lower for Cd and Zn. The difference was much more
pronounced in the case of LR, which reflects the much less linear
response of Cd and Zn sorption/retention to soil variables, and the
greater ability of CART to predict this non-linear response. With LR,
the R2 values of Cr could be grouped with those of Pb and Cu, and
those of Ni with those of Cd and Zn; while with CART, both Cr and
Ni grouped with Pb and Cu.

Non-linear tree regression models constructed with CART fitted
the data better than linear models, especially for Cd, Ni and Zn;
and with both kinds of model the data for Pb, Cu and Cr were fit-
ted better than those for Cd, Ni and Zn (the difference being much
more marked for linear models), suggesting that the influence of
soil properties on the sorption and retention of the latter three
metals was limited by the preferential binding of the former three.

Inclusion of the sorption or retention of Pb, Cu or Cr as a CART
predictor variable generally brought about just a small increase
in RZ for Cd and Zn, or a small decrease for Ni. However, larger
increases were achieved when Cr was included in the analysis of Zn
or Cd sorption and when Cu was included in the analysis of Cd reten-
tion, and a larger decrease when Cr was included in the analysis of
Cd retention.

Figs. 1-6 show the CART regression trees obtained for the metals
using only the soil properties as predictors. Concerning Fig. 1, top
(sorption of chromium), the variable with respect to which the first
bifurcation of the tree was defined was Fe oxides content, the three
soils with the lowest Fe oxides contents all having very high Cr sorp-
tion. Soils with higher Fe oxides contents were then segregated on
the basis of sand content (which is negatively correlated with clay
content); and soils with high sand contents were subsequently sep-
arated with respect to clay composition (specifically, on the basis
of chlorite, gibbsite and plagioclase contents, in that order). For the
retention of chromium (Fig. 1, bottom), the first bifurcation of the
tree was again defined with respect to Fe oxides content, but nodes

Goodness-of-fit (R?) of the models fitted by CART and forward stepwise multiple linear regression (LR) to account for the sorption and retention data (percentages of metal
sorbed and retained) on the basis of soil properties or, in the case of some CART models, soil properties plus the sorption or retention of one of the metals Pb, Cu and Cr.

R? sorption (%)

R? retention (%)

LR CART LR CART
Soils +Pb +Cu +Cr Soils +Pb +Cu +Cr

cd 0.703 0.820 0.840 0.843 0.916 0.556 0.854 0.854 0.947 0.788
Cr 0.899 0.957 0.895 0.958
Cu 0.970 0.981 0.981 0.991
Ni 0.688 0.949 0.969 0.949 0.922 0.606 0.947 0.947 0.947 0.918
Pb 0.978 0.993 0.976 0.991
Zn 0.424 0.774 0.774 0.774 0.887 0.352 0.885 0.885 0.886 0.886
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Cr sorbed
1D=1 N=42]
Mu=31.422
Var=285.961
Fe oxides
>2.615
ID=3 N=3
Mu=80.117 Mu=27.676
Var=0.851 Var=111.459
Sand
> 50.075
ID=5 N=30
Mu=38.338 Mu=24.477
Var=16,536112 Var=95.602
Chlorite
<= 22.025
ID=8 N=27]
Mu=22.139 Mu=45.513
Var=51.529 Var=0.586
Gibbsite
<=25.000 > 25.000
ID=10 N=12] ID=11 N=1

Mu=28.056 Mu=17.407

Var=29.779 Var=18.531

Plagioclase

<= 0.250 >0.250
1D=12 N=6} 1D=13 N=6
Mu=23.252 Mu=32.859
Var=4.418 Var=8.987
Cr retained

Mu=29.626
Var=284.545
Fe oxides
>2.615
ID=3 N=3!
Mu=79.580 Mu=25.784
Var=0.847 Var=99.649
Silt
<= 23.660
D=4 N=2
Mu=22.202 Mu=33.842
Var=96.372 Var=13.224
Organo-mineral fraction
<=48.125 > 48.125
1D=6 N=2. D=7 N=3
Mu=19.709 Mu=42.139
Var=52.481 Var=0.299
Silt
<=3.655
D=8 N=8§|
Mu=26.779 Mu=16.175
Var=46.060 Var=18.205
Sand
<=75.585 > 75.585

ID=10 N=5 ID=11 N=3]
Mu=21.842 Mu=35.009
Var=7.561 Var=1.883

Fig. 1. CART binary regression tree for the sorption (top) and retention (bottom) of Cr by typical Galician soils.
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Cu sorbed
ID=1 N=42|
Mu=47.272
Var=523.965
Haematite
<=0,500000
Mu=29.488 Mu=60.610
Var=363.014 Var=229.573
CEC Chlorite
>11.995
ID=15 N=6|
Mu=11.327 Mu=47.649 Mu=53.953 Mu=80.582
Var=19.997 Var=46.388 Var=127.428 Var=4.170
Vermiculite Organo-mineral fraction
- - — —_
<=2.915 >2.915 <=27.115 >27.115
ID=10 N=6} ID=11 N=3| ID=17 N=10]
Mu=43.087 Mu=56.774 Mu=44,005 Mu=61.912
Var=7.121 Var=0.022 Var=52.182 Var=45,110
silt CEC
— e
<= 33.330 > 33.330 <= 5.365 > 5.365
D=18 N=5] [iD=19 N=3] [iD=20 N=7] [D=21 N=3
Mu=49,347 Mu=35.100 Mu=58.198 Mu=70.576
Var=5.830 Var=2.572 Var=18.403 Var=0.171
Cu retained
D=1 N=43
Mu=42.519
Var=537.573
Haer’nal‘ne
<=0.500 >0.500
D=2 N=1 D=3 N=2-
Mu=25.310 Mu=55.426
Var=356.291 Var=284.825
CEC CEC
<=3.325 >3.325 <=9.080 > 9,080
D=4 N=9) D=5 =t D=14  N=1 O=15 N
Mu=7.409 Mu=43.211 Mu=62.667 Mu=33.708
Var=14.898 Var=56.815 Var=137.859 Var=96.824
Sand CEC CEC CEC
l_‘_| r = 1 l_l_|
<=62.295 > 62,295 <=6.380 > 6,380 <= 5230 >5230 <=10.225 >10225
D=6 N=9 [D=7 N=§| [D=10 nN=g [D=11 N= [D=16  N-9) [D=17 _ N= [D=26 N=9 [D=27r W~=
Mu=2.339 Mu=8.945 Mu=48.062 Mu=33.509 Mu=52.334 Mu=72.997 Mu=43.393 Mu=24.024
Var=0.034 Var=3.052 Var=14.407 Var=0.462 Var=39.884 Var=22.352 Var=4.379 Var=1.694
Kac;linihe Kaolllnile
<= 5.000 > 5,000 <= 7750 >7.750
O=76 N3 [O=15 W=§ [b-zz  N=3 [0 g
Mu=44.080 Mu=56.461 Mu=79.087 Mu=69.952
Var=7.605 Var=4.927 Var=0.000 Var=5.713

Fig

. 2.

CART binary regression tree for the sorption (top) and retention (bottom) of Cu by typical Galician soils.
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Pb sorbed
D=1 N=42
Mu=71.182
Var=375.372
CEC
<=3.325 >3.325
ID=2 N=12 ID=3 N=30
Mu=46.870 Mu=80.906
Var=337.496 Var=59.539
Haematite Mn oxides
> 5.000 <=0.110
=5 N=3] ID=10 N=21
Mu=36.586 Mu=77.723 Mu=84.607 Mu=72.272
Var=26.833 Var=0.319 Var=27.766 Var=27.174
Kaolinite Gibbsite Mn oxides
<= 16.500 >16.500 <=51.000 >51.000 <=0.215 >0.215
ID=6 N=8 D=7 N=3} ID=12 N=15] ID=13 N=6| ID=26 N=3| ID=27 N=6|
Mu=40.154 Mu=29.450 Mu=81.942 Mu=91.267 Mu=65.785 Mu=75.515
Var=1.234 Var=1.656 Var=12.839 Var=2.971 Var=0.421 Var=8.996
Vermiculite
<=2.800 > 2.800
1D=14 N=9| ID=15 N=6|
Mu=79.242 Mu=85.992
Var=1.766 Var=2.109
Pb retained
ID=1 N=42
Mu=67.331
Var=417.741
CEC
<=3.325 >3325
D=2 N=12 ID=3 N=30
Mu=42.374 Mu=77.313
Var=371.277 Var=87.549
Sand Mn oxides
<= 55.975 > 55.975 <=0.110
=4 N=3] ID=5 N=9| ID=10 N=21
Mu=75.052 Mu=31.482 Mu=82.009 Mu=66.356
Var=0.261 Var=20.366 Var=31.195 Var=47.536
Gibbsite Gibbsite Organo-mineral fraction
—
<= 52.750 > 52.750 <=51.000 >51.000 <=30.145 > 30.145
D=6 N=6| [ID=7 N=3] =12 N=1§ ID=13 N=6| [ID=22 N=6) ID=23 N=3
Mu=34.552 Mu=25.342 Mu=79.418 Mu=88.486 Mu=61.757 Mu=75.554
Var=1.352 Var=1,849818 Var=18.505 Var=4.181 Var=7.627 Var=0.452
Vemiculite
<=2.800 > 2.800
10=14 N=8 ID=15 N=6
Mu=76.359 Mu=84.006
Var=4.996 Var=3.682

Fig. 3. CART binary regression tree for the sorption (top) and retention (bottom) of Pb by typical Galician soils.
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Cd sorbed
D=1 N=42|
Mu=21.578
Var=144.757
Mn oxides
<=0.140 >0.140
ID= N=33]
Mu=24.628 Mu=10.396
Var=127.454 Var=49.063
Vermiculite
<=0.395 >0.395
N=9 1D=5 N=24
Mu=14.529 Mu=28.415
Var=193.500 Var=50.108
Silt Sand
<=26.165 > 26.165 <=79.680 > 79.680
D6 N=6 o= N=3 =10 N=Z1 R N=3
Mu=4.883 Mu=33.824 Mu=30.329 Mu=15.009
Var=6.515 Var=9.068 Var=27.085 Var=5.900
Cd retained
N=42]
Mu=15.953
Var=138.132
Mn oxides
<=0.140 >0.140
1D=2 N=33 D=3 N=9|
Mu=19.293 Mu=3.707
Var=121.702 Var=7.503
Silt
<= 23.660 > 23.660
|D=4 N=24 5 N=9
Mu=15.687 Mu=28.909
Var=113.992 Var=15.129
Vermiculite
<=0.395 >0.395
1D=6 N=6 ID=7 N
Mu=2.812 Mu=19.979
Var=8.919 Var=75.338
Haematite
<=4.500 >4.500
1D=10 N=15) ID=11 N=3
Mu=22.898 Mu=5.388
Var=38.359 Var=4.742

Fig. 4. CART binary regression tree for the sorption (top) and retention (bottom) of Cd by typical Galician soils.
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Ni sorbed
ID=1 N=42,
Mu=18.505
Var=105.364
Silt
<= 23.660 > 23.660
ID=2 N=30) ID=3 N=12,
Mu=14.664 Mu=28.108
Var=87477 Var=20.978
Sand Al oxides
r = —
<= 68.375 <= 11.080 > 11.080
D=4 N=15 |D=22 N=5 ID=23 N=7|
Mu=8.247 Mu=21.082 Mu=33.129 Mu=24.522
Var=49.329 Var=43.261 Var=2.719 Var=3.150
Organo-mineral fraction Haematite
—_— e
<= 6.260 > 6.260 <=4.500 > 4.500
D=6 N=3] [D=7  N=17 [D=12 N=g| [O=15 N=5
Mu=22.068 Mu=4.792 Mu=25.706 Mu=14.144
Var=1.556 Var=1.577 Var=13.885 Var=7.117
Ni retained
=1 N=42)
Mu=14.208
Var=106.129
Haematite
<= 22500 > 22.500
D=2 N=36| ID=3 N=6|
Mu=11.691 Mu=29.314
Var=78.334 Var=6.684
CEC
<=2.370 > 2.370
ID=4 N=9| ID=5 N=27|
Mu=19.902 Mu=8.953
Var=2.561 Var=73.623
Sand
<= 74515 > 74.515
ID=12 N=17| ID=13 N=10|
Mu=4.005 Mu=17.365
Var=22.589 Var=48.003
Haematite Haematite
<=4250 > 4.250 <= 4.500 > 4.500
ID=14 N=12] ID=15 N=b| 1D=20 N=6 ID=21 N=4
Mu=1.197 Mu=10.745 Mu=22.327 Mu=9.922
Var=2.325 Var=6.874 Var=17.957 Var=0.736

Fig. 5. CART binary regression tree for the sorption (top) and retention (bottom) of Ni by typical Galician soils.
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Zn sorbed
D=1 N=42
Mu=19.057
Var=117.079
Silt
<= 23.660 > 23,660
D=2 N=30 D=3 N=12
Mu=15.855 Mu=27.061
Var=110.244 Var=44.470
Vermiculite
<= 2645 >2.645
D=4 N=15] D=5 N=15
Mu=9.562 Mu=22.148
Var=62.179 Var=79.106
Gibbsite Haematite
<= 67.000 > 67.000 <= 0.500 > 0.500
D=6 T N=1Z) D=7 ‘ N=3 D=12 N=9 D=13 N=6|
Mu=6.420 Mu=22.128 Mu=28.637 Mu=12.413
Var=28.249 Var=0.527 Var=24.266 Var=3.435
Zn retained
D=1 N=42
Mu=16.191
Var=122,804123
Silt
<= 17695 >17.695
D=2  N=24 5=3 =T
Mu=12.003 Mu=21.773
Var=141.349 Var=43.534
Silt Gibbsite
r . 1 e ]
<= 3.655 > 3.655 <= 43.250 > 43.250
D=4 N=8 D=5 N=16] D=16  N=7] [D=17 N=11
Mu=24.858 Mu=5.576 Mu=28.152 Mu=17.714
Var=106.288 Var=34.959 Var=14.446 Var=19.671
Gibbsite Gibbsite
—_— —_—
<=26.000 > 26.000 <= 71.000 > 71.000
D=6 N=6] [D=7 N=2] [iD=10 N=13] [ID=11 N=3
Mu=30.362 Mu=8.344 Mu=3.158 Mu=16.058
Var=20.494 Var=0.059 Var=11.822 Var=0.002

Fig. 6. CART binary regression tree for the sorption (top) and retention (bottom) of Zn by typical Galician soils.
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were subsequently split on the basis of silt, sand, and organomin-
eral contents. All the figures can be interpreted the same way; for a
more detailed explanation of the practical use of CARTs, see Covelo
etal. [22].

For Cu (Fig. 2), the variables haematite content and cation
exchange capacity are used to split nodes in both the sorption and
retention trees, accompanied by silt, organomineral content, ver-
miculite and chlorite in the sorption tree, and by sand and kaolinite
in the retention tree. For Pb (Fig. 3), CECe, Mn oxides, gibbsite and
vermiculite split nodes in both trees, accompanied in the sorption
tree by haematite and kaolinite, and in the retention tree by sand
and organomineral contents. For the less readily sorbed metals,
the node-splitting variables common to the sorption and retention
trees are Mn oxides, silt and vermiculite for Cd; sand and haematite
for Ni; and silt and gibbsite for Zn (Figs. 4-6).

5. Conclusions

The extent to which Galician soils sorb and retain Pb, Cu, Cr, Cd,
Ni and Zn in solutions containing all six is modelled in terms of
soil properties much better by binary regression trees constructed
using the CART algorithm than by stepwise linear regression mod-
els. Both kinds of model successfully fitted the data for Pb and Cu,
the metals that are most readily sorbed and retained, but CART is
clearly superior to linear regression for modelling the behaviour
of the other metals, especially the markedly non-linear behaviour
of Zn and Cd, which is influenced by competition from the more
readily sorbed metals Cr and Cu.

Of the six metals competing for sorption sites in these experi-
ments, Pb, Cu and Cr were sorbed and retained to a greater extent
than Cd, Ni and Zn. Non-linear tree regression models constructed
with CART fitted the data better than linear models, especially for
Cd, Ni and Zn; and with both kinds of model the data for Pb, Cu
and Cr were fitted better than those for Cd, Ni and Zn (the differ-
ence being much more marked for linear models), suggesting that
the influence of soil properties on the sorption and retention of the
latter three metals was limited by the preferential binding of the
former three.
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